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In the auscultatory technique, the most widely used clinical method to measure the 
arterial blood pressure, the systolic and diastolic blood pressures are estimated based 
on the beginning and cessation of the so-called Korotkoff sound emitted from the 
artery. Despite the widespread use of the technique, the mechanism by which 
Korotkoff sound is generated has not been well understood. I n  this report, a series 
of model experiments and a one-dimensional wave-propagation analysis have been 
conducted in order to elucidate the mechanism. As a result, the clear thud sound, 
heard when the cuff pressure is in the vicinity of the diastolic blood pressure, has been 
found to be generated by the sudden expansion of the vessel due to the shock wave 
that is formed a t  the wave front by compression-wave overtaking during wave 
propagation through the partially collapsed vessel segment under the cuff. Because 
of the strong nonlinear characteristics of the tube law, the sudden change in the vessel 
compliance around the near-zero transmural pressure, the shock wave is formed only 
when the cuff pressure, externally applied to the vessel, is nearly equal to or higher 
than the diastolic blood pressure and the vessel is partially collapsed in the late 
diastolic phase. The shock strength a t  the distal end of the partially collapsed vessel 
segment increases with the cuff pressure and the collapsed-vessel segment length 
within some limits. The waveform of the sound is well correlated with the time 
differential of the pressure waveform. 

1. Introduction 
The arterial blood pressure is one of the most significant diagnostic parameters in 

clinical medicine. The most widely used non-invasive clinical method for blood- 
pressure measurement is the so-called auscultatory technique, which uses a pneumatic 
cuff and a manometer monitoring the cuff pneumatic pressure. In  this method, 
systolic and diastolic blood pressure are estimated as follows. The cuff set on an upper 
arm is a t  first inflated rapidly above the systolic pressure to stop the arterial blood 
flow completely and is then deflated gradually. As the cuff pressure drops to a certain 
critical limit, clear short tapping sounds become audible with each pulse through a 
stethoscope set right above the brachial artery distal to the cuff. With further 
decrease of the cuff pressure, the tapping sounds change into murmurs and then into 
clear thud sounds and finally all sounds disappear. The cuff pressures a t  which the 
first tapping sound and the last thud sound are heard are commonly selected as the 
systolic and the diastolic arterial blood pressure respectively. The sounds mentioned 
above are called Korotkoff sounds because the auscultatory technique was first 
proposed by Korotkoff (1 905). 

This method has been empirically proved to be valid in the majority of persons 
under normal conditions (errors arise with obese patients, the use of a cuff of 
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inappropriate size, etc.) by a great number of clinical studies conducted since its 
introduction in the early 20th century in which non-invasively determined systolic 
and diastolic pressures were compared with directly measured ones (Pickering 1955). 

However, the mechanism by which Korotkoff sound is generated has not yet been 
understood. Since understanding of the reason why clear tapping or thud sounds are 
emitted from such a pliable tube as a blood vessel is not only interesting from the 
scientific point of view, but also indispensable for improving the method’s reliability 
and expanding its availability, many attempts to elucidate the mechanism have been 
conducted. Erlanger (1921) observed an increase in the steepness of the ascending 
limb of the pulse and small high-frequency waves appearing in front of it, when the 
pulse propagates through a canine carotid artery compressed pneumatically and 
partially collapsed. He termed i t  the preanacrotic phenomenon. Stimulated by 
Erlanger’s study, Bramwell (1925) constructed a model artery with the inner tube 
of a bicycle tyre and studied deformation of the pulse wave when it propagates 
through the collapsed tube and obtained similar results to those of Erlanger. 
Bramwell tried to explain the preanachrotic phenomenon as closely analogous to the 
formation of a shock wave and breakers in the case of waves on the seashore. In the 
end, however, he concluded that Korotkoff sound was generated by the turbulence 
produced by instability of the wave front. His idea of shock-wave formation was 
supported only by Beam (1968), who showed analytically the development of the 
shock wave and proposed the latter as the cause of the short sharp sound. The 
shock-wave hypothesis, however, has been neglected by all other researchers, and 
several other hypotheses to explain rapid vessel-wall vibration were proposed, such 
as the excitation due to turbulent flow (Chungchareon 1964; Burns 1959; Fruehan 
1962), instability of a partially collapsed tube filled with incompressible fluid (Anliker 
& Raman 1965) and nonlinear limit-cycle oscillation observed when fluid flows 
through a tube, a portion of which is compressed by excess external pressure (Ur & 
Gordon 1970; Lighthill 1972). But all of them except Beam’s failed to explain the 
deformation of the pulse wave; when Korotkoff sound is heard, the pulse wave 
monitored in the artery distal to the cuff is deformed greatly and always has a very 
steep ascending limb with which Korotkoff sound synchronizes (Wallace, Lewis & 
Khalil 1961). 

From the experimental studies conducted by various researchers, the following 
facts are known: (i) Korotkoff sound is heard only when the cuff pressure is between 
systolic and diastolic pressure, and hence the blood vessel below the cuff is partially 
collapsed in late diastolic phase (MuCutcheon & Rushmer 1967) ; (ii) the tapping and 
thud sound is produced in a short period synchronizing with the ascending limb of 
each pulse coming out from the collapsed-vessel segment, which is extraordinarily 
steeper than that of a normal pulse (Wallace et al. 1961). Furthermore, analytical 
studies of pressure-wave propagation through such an elastic tube as a blood vessel 
or thin-walled, rubber tube filled with incompressible fluid show that the propagation 
velocity of a small perturbation is decreased as the transmural pressure of the vessel 
decreases, therefore a finite-amplitude compression wave (ascending limb of the pulse 
wave) becomes steeper as it propagates (Bramwell 1925; Kamm & Shapiro 1979). 
Since the compliance of such tubes increases abruptly as they begin to collapse under 
the condition of negative transmural pressure (Brower & Scholten 1975), the 
ascending limb of the pulse wave travelling through the partially collapsed vessel 
segment is considered to steepen rapidly and to produce a pressure discontinuity 
surface (shock wave) in a short propagation distance. 

These facts and considerations led us to consider the shock wave as a most likely 
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source of the tapping or thud sound. In  order to prove this hypothesis, model 
experiments and an analytical study were conducted and, as a result, Korotkoff sound 
at diastole (that is, when the cuff pressure is around the diastolic blood pressure level) 
has been shown to be generated by the shock formed in the partially collapsed tube. 
The details will be discussed in the following sections. 

2. Experimental apparatus and procedure 
In the planning of the experimental apparatus, the following consideration was 

made so that the real situation was simplified. 
The form of the real pulse wave a t  some location of the brachial artery is determined 

as a result of interaction of incident wave and reflection waves from various distal 
locations of the arterial system. However, as mentioned in $1  Korotkoff sound is 
generated in a short period synchronizing with the ascending limb of each pulse, in 
which the incident wave is dominant. This suggests that the incident wave plays the 
main role in sound generation. Therefore in the experiment reflection from locations 
distal to the cuff is neglected. 

When the cuff is inflated, reflection waves may be produced at the cuff. They 
propagate up the artery and are re-reflected at many locations, such as the junction 
of the aorta and the heart, and come back to the cuff location, changing the incident. 
pressure waveform. The effect of these waves can be important, but the real arterial 
system is too complicated to allow estimation of the magnitude and the shape of the 
waves. Therefore these waves are also neglected in the experiment and the incident 
pressure waveform is assumed to be the same in both cases with and without cuff 
compression. 

The situation of late diastolic phase is considered to be quasi-steady as the blood-flow 
velocity is very low compared with that due to the main part of the pulse wave. 
Therefore in the experiment the blood flow a t  late diastole is neglected and the 
situation is assumed to be stationary. 

In the real situation, the vessel external pressure applied by the cuff has a gradual 
distribution along the vessel axis, caused by the rounded ends of the cuff and the 
tissue between the cuff and the vessel. But it is not easy to determine the real 
external-pressure distribution, which may change from subject to subject. Therefore, 
in order to avoid complication, the most primitive case - sudden change of vessel 
external pressure at the cuff margins - was selected. 

The experimental apparatus is shown in figure 1 (a) .  It consists of a thin-walled 
latex penrose rubber tube of 9 mm diameter, a pressure box and a mechanical pump, 
which simulate an artery, a pneumatic cuff and the heart respectively. Water is 
selected as the working fluid. The total length of the rubber tube is 2.3 m. The rubber 
tube penetrates the pressure box, which is set on the central portion of the tube, 
through 9 mm holes drilled on each of the box sidewalls (5 mm thick) and glued to 
them. The proximal and distal ends of the tube are connected to the pump and the 
water reservoir 1 respectively. The initial internal pressure Po of the tube, corre- 
sponding to the diastolic pressure, is set arbitrarily by changing the height of the 
reservoir. Several pressure taps for measuring the static pressure P in the tube are 
set on the bottom of the tube as shown in figure 1 ( b ) .  Therefore the tube segment 
in the box is fixed on its bottom to the base plate at 4 or 6 pressure-tap locations 
and hence partially restricted in its axial movement. The other part of the tube 
segment, however, is completely free. Locations of the pressure taps are represented 
by X, which is the distance along the tube axis from the inner surface of the proximal 
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FIGURE 1.  Experimental apparatus: (a)  schematic diagram of apparatus; (b )  detail of pressure tap 
and pressure-transducer system ; ( c )  detail of mechanical pump. A, water reservoir 1 : B, pressure 
box; C, microphone; D, rubber tube; E, pressure taps: F, pressure-transducer box; G, water 
reservoir 2 ;  I, brass tube; J, hard rubber cork; K,  pressure transducer; L, injector; M, piston; N, 
rotating disk: 0, pin pusher; R,  pin initial position. 

pressure box wall. X is negative in the proximal direction and positive in the distal 
direction. 

Two small sensitive strain-guage-type pressure transducers are used to measure P. 
One is always set on the reference site, 44 cm proximal to the pressure box, and the 
other on any other tap. 

The pressure box is connected to the water reservoir 2 and the pressure Peb in the 
box, representing the cuff pressure, is arbitrarily set by changing the height of the 
reservoir. The pressure box always contains a certain amount of air and water to 
simulate the pneumatic cuff and the tissue of the upper arm respectively. The length 
L, of the box used in this study is 19 or 9 cm. 

Details of the pump are shown in figure 1 (c,). The pump consists of a commercially 
available plastic injector and a pin pusher, which is set vertically on a disk rotating 
a t  constant speed, and pushes the injector piston only once. Therefore, as shown in 
the figure, the piston velocity variation with time and hence the pressure wave 
generated in the rubber tube are half-sinusoidal. The amplitude and period of the 
pressure wave can be set arbitrarily by changing the piston stroke S and the rotation 
speed N of the pin pusher. The flow rate Q produced by the pump is expressed as 
Q ( t )  = 5-85NS sin 277Nt. 

The sound generated by the pressure wave is monitored by a condenser-type 
microphone a t  some locations distal to the pressure box. The microphone is set on 
one end ofa  plastic tube, of which the other end is made semicircular and isin contact 
with the rubber tube. 

Movement of the top of the rubber tube wall due to the pressure wave is measured 
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FIGURE 2. Schematic diagram of wall-displacement measuring system. A, micrometer; B, needle ; 
C, metal foil; D, rubber tube; E, electrical resistance; F, battery; G, data recorder; I, pen recorder. 

at the same location where sound is monitored. The apparatus measuring the wall 
movement is shown in figure 2. A small thin metal foil is glued on the top of the rubber 
tube and a metal needle is set vertically right above the foil. The foil, the needle, a 
battery and a resistance make an electric circuit. I n  this system, the electric current 
is detected only when the tube is inflated by the pressure wave and the foil and the 
needle tip touch each other, therefore the contact period can be detected. By 
changing the initial clearance H between the needle tip and the foil and repeating 
the same experiment, the tube-wall movement is determined. 

All the pressures are measured based on the atmospheric pressure. The whole rubber 
tube except the segment in the pressure box is in the atmosphere, therefore the 
external pressure P, outside the pressure box is zero everywhere. I n  order to  raise 
frequency responsiveness of the recording system, all data are stored on a seven- 
channel data recorder and played back a t  a speed of & of the recording speed for data 
processing. 

3. Experimental results 
3.1. Tube law 

The tube law, which is expressed by the relation between tube cross-sectional area 
A and transmural pressure P -  P,, plays an  essential role in pressure-wave propagation 
through an elastic tube filled with fluid. From this reason, the tube law of the 
rubber-tube segment in the pressure box was measured first of all as shown in figure 
3. Here A is the mean value within the pressure box determined by dividing the 
segment volume by its length Lb. The filled and open circles in the figure corre- 
spond to the pressure box of 19 and 9 em length respectively. In  both cases, when 
P-Peb is large, and hence the rubber tube is fully inflated, the tube compliance 
h' = dA/d(P-P,b) is small, but, when P-P,, becomes nearly zero or slightly nega- 
tive, K increases abruptly along the tube collapse. When P -  Peb decreases further 
and the upper and lower tube walls contact at the centre, K again decreases gradually. 
The dependence of the tube compliance on the box length L, over the negative P -  Peb 
range is considered to be due to the end effect; near the ends of the collapsed tube 
segment, it is fixed to the holes in the solid walls, maintaining a circular shape, 
which restricts tube collapse. 

In the figure, the wave-propagation velocity (C = (A/pK)?)  of a small perturbation, 
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FIQURE 4. Measured pressure wave at three locations for Peb = 0 and best-fitted half-sinusoidal 
curves; Lb = 19 cm, P, = 40 cmH,O: -0-, best-fitted half-sinusoidal curve; top, x = -44;  
middle X = 11  ; bottom, X = 46 cm. 

determined from the filled-circle data, is shown as a reference. As observed by many 
researchers, C decreases significantly along with tube collapse and the minimum value 
is only 0 4 6  m/s. 

3.2. Deformation of pressure wave 

3.2.1. Case without the external pressure in the box, Peb = 0. At first the basic 
characteristics of pressure-wave propagation when none of the tube is compressed 
externally was examined. Time variation of the tube internal pressure P due to the 
propagating pressure wave was measured a t  various locations along the tube axis. 
An example of the pressure waveforms measured a t  three locations is shown in figure 
4, where the initial tube pressure P, = 40 cmH,O, flow rate of the pump 
Q(t)  = 45 sin 24.4t cm3/s, and pressure-box length L, = 19 em. The figure indicates 
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FIGURE 5.  Change of P,,, and T, for Peb = 0:  a, TWIT,,; 0, P,,,/P,,,,. 

that the half-sinusoidal pressure wave generated by the pump propagates in the distal 
direction (the left hump in each of the three records) and is reflected at the distal 
end of the tube closed by the valve and then propagates in the opposite direction 
(the second humps). I n  the course of propagation, the maximum pressure amplitude 
P,,, decays and the foot of the wave expands widely, whereas the main part of the 
pressure wave maintains the half-sinusoidal form and the steepening phenomenon is 
not observed. The wave propagation velocity W ,  determined from the P,,, movement, 
does not depend on X and is about 8-6 m/s, which agrees well with the calculated 
perturbation-propagation velocity C shown in figure 3. 

In order to know the characteristics of pressure-wave deformation, the main part 
of each pressure wave was approximated by the best-fitted half-sinusoidal curve as 
shown in figure 4 by dotted broken lines. P,,, and the pressure wave width T,, which 
is represented by a half-period of the sinusoidal curve, are plotted against X in figure 
5, where P,,,, and Two are the values a t  the reference site X = -44 em. The data 
on P,,, and T, over X greater than 150 em are obtained from the reflected pressure 
wave. Surveying over a wide range of X, P,,, decays and Tw widens with increasing 
X, probably owing to viscous effects, but in the vicinity of the pressure box, which 
becomes the main test section in the following experiments, they are kept almost 
constant, and hence the pressure waveform changes little. From these experimental 
results i t  can be said that, when the tube is fully inflated, the pressure waves as strong 
as those treated in this experiment can be regarded as small perturbations, which 
can be treated by linearized theory. 

The pressure waves measured a t  the reference site (X = - 44 em) and in the vicinity 
of the 19 cm pressure box ( X  = - 1.5, 20.5, 35.5 cm) and the sound monitored a t  
1.5 cm distal to the pressure box (S = 20.5 em) are shown in figure 6. The experimental 
conditions are the same as those in figure 4. As seen in the figure, the sound 
synchronized with the pressure wave can be detected by the microphone, but not 
heard by the ear set at the end of the plastic tube instead of the microphone. It is 
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FIGURE 6. Measured pressure wave in the vicinity of the pressure box and sound monitored at the 
exit of the box ; L, = 19 cm, Po = 40, Peb = 0, Po- Peb = 40 cmH,O. The top four figures are pressure 
and the bottom one is sound. Measuring site, from top to bottom, X = -44 ,  - 1.5, 2 0 5 ,  3 5 5 ,  
2 0 5  cm. 

considered to be due to  the very low amplitude of audible sound components higher 
than 20 Hz. 

3.2.2. Case with Peb a little higher than the initial tube internal pressure Po. I n  order 
to know the effect of tube collapse in the pressure box on pressure-wave propagation, 
a series of experiments have been conducted by setting the initial transmural pressure 
P,- Peb in the pressure box to be in the sudden A-change region in figure 3, which 
simulates the condition of diastolic-pressure measurement in the auscultatory 
technique. 

The pressure wave and sound measured a t  the same locations as in figure 6 are 
shown in figure 7 for p0- Peb = -0.8 cmH,O. All the experimental conditions other 
than Peb are the same as those in figure 6 (the pressure waves from figure 6 are shown 
in figure 7 by broken lines for comparison). Pressure waves a t  every measurement 
site are greatly deformed from those of the fully inflated tube case. Since, among all 
the experimental conditions the only change is in Peb, which compresses and squeezes 
the tube segment in the pressure box, the pressure-wave deformation should be caused 
by the partially collapsed tube segment. Therefore the deformation observed on the 
proximal side to the pressure box is logically inferred to  be caused by the reflection 
wave from the collapsed segment in the box. Since i t  is known that the pressure-wave 
propagation in the fully inflated tube can be treated linearly, the reflection wave can 
be calculated by subtracting the incident wave (pressure wave indicated by broken 
lines) from the resultant wave (indicated by solid lines). The reflection waves at 
X = - 1.5, -44 cm, obtained graphically, are shown in figure 8. The dotted line in 
the upper figure is the reflection wave a t  S = - 1.5 cm shown for comparison. The 
close resemblance between the two should be noted. The wave-propagation velocity 
determined from the shift of the peak is 8.2 m/s, which is a little smaller than that 
of the incident pressure wave (8.6 m/s). The difference is considered to  be caused by 
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FIGURE 7 .  Measured pressure wave in the vicinity of the pressure box and sound monitored at the 
exit of the box; L, = 19 cm, Po = 40, Peb = 40.8, P,-Pe, = - 0 8  cmH,O. The top four figures are 
pressure and the bottom one is sound. Measuring site, from top to bottom, X = -44, - 1.5, 205, 
355, 205  cm. 

0 - 
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the fluid-particle velocity. From these results, i t  can be seen that the incident pressure 
wave, generated by the pump, is partly reflected as a negative-pressure wave by the 
partially collapsed tube segment. 

The pressure wave transmitted to the fully inflated tube segment distal to the 
pressure box consists of the steep ascending limb and the smooth remaining part. 
Synchronized with the steep ascending limb, strong sound is detected by the 
microphone. I n  this case, the sound can be heard by the ear as a thud sound. The 
relation between pressure wave and sound will be discussed in $3.3. It is interesting 
that the smooth portion of the transmission wave is almost identical with that of tho 
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t 6) 
FIQURE 9. Effect of Peb; L, = 19 cm, Po = 40 cmH,O: top, pressure wave measured at X = -44 cm; 
middle, graphically determined reflection wave at S = -44 cm; bottom, pressure wave measured 
at X = 20.5 cm. 

fully inflated tube. Therefore, i t  can be said that the partially collapsed tube segment 
deforms the transmission wave so that some of the front portion of the incident 
pressure wave is cut off to  make the steep ascending limb and the rest of it is 
untouched. 

The effect of the degree of initial tube collapse on the transmission-wave deformation 
was examined. The measured pressure waves at the reference site (S = -44 cm) and 
the exit of the box (20.5 cm) and the graphically obtained reflection waves at the 
reference site are shown in figure 9 for various Po-Peb. All the experimental 
conditions except Peb are the same as those in figure 6. Regardless of the great external 
pressure difference in and out the pressure box, when Po- Peb is greater than 
2-5cmH20 and hence the tube segment in the box is inflated, no significant 
pressure-wave deformation is detected. But, if P,- Peb descends below this value and 
the tube segment begins to collapse, the ascending limb of transmission wave becomes 
steep and a t  the same time the negative reflection wave in the proximal direction 
appears. With decrease of Po - Peb, the reflection wave is augmented, and as a result 
the incident wave front portion seeming to  be cut off by the steep ascending limb 
widens. However, if &-Peb goes down below some value, in this case - 1-2 cmH,O, 
the deformed transmission wave is delayed as a whole from that of the fully inflated 
tube case and, at the same time, the form of the reflection wave ceases to be similar. 
With further drop of Po - peb, the transmission wave becomes weak and widely spread, 
and the amplitude of the negative reflection wave, not shown in the figure, decreases. 

I n  addition to the abovementioned large-scale deformation, high-frequency 
pressure waves of the kind observed by Erlanger (1921) and Bramwell (1925) appear 
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FIQURE 10. Measured pressure wave at 1.5 cm distal to 9 em long pressure box for various Peb; 

L, = 9 om, P, = 40 cmH,O, X = 105 cm. 

on the transmission wave along with the development of the steep ascending limb. 
When the steep ascending limb is low, they are weak and seen only just behind the 
ascending limb, but with the growth of the ascending limb they become strong and 
can be observed even over and in front of the ascending limb. These high-frequency 
pressure waves damp very rapidly in the fully inflated tube. 

In order to see the effect of the collapsed-tube segment length Lb on the 
transmission-wave deformation, the same experiment was conducted using the 
shorter pressure box of 9 cm length. The pressure waves measured at the exit of the 
box ( X  = 105 cm) for various P,-P,, are shown in figure 10. All the experimental 
conditions except L, are the same as those in figure 9. General characteristics of 
pressure-wave deformation are the same in both cases, but shortening of Lb makes 
the high-frequency pressure waves weak and lowers the pO-Peb value at which an 
identical transmission wave (with the same amplitude of ascending limb) is obtained 
a t  the exit of the box. I n  other words, the shorter the collapsed-tube segment, the 
higher becomes the Peb which develops the steep ascending limb strong enough to 
generate an audible thud sound; the shorter the cuff, the higher the diastolic pressure 
estimated by the auscultatory technique. This agrees well with the fact reported by 
Kirkendall et al. (1967) : 'if the cuff is too wide, the reading will be erroneously low '. 
And Steinfeld, Alexander & Cohen (1974) showed that  there are significant errors if 
the cuff is too short. 

3.3. Relation between pressure wave, tube-wall movement and sound 
In $3.2 it  has been shown that a transmission wave through the partially collapsed 
tube segment has a steep ascending limb and a strong sound is generated in a short 
period synchronizing with the ascending limb. I n  this subsection the mechanism by 
which the clear thud sound is generated by the steep ascending limb will be discussed. 

Let us consider the sound generated by the fully inflated rubber tube outside the 
pressure box. As is well known, the amplitude S of a sound produced by an expanding 
or contracting elastic tube is proportional to the radial velocity V, of the tube wall : 

dr scc v,=- 
dt ' 

where r is the radius of the tube. Using the relation between r and the cross-sectional 
area A 

1 d A  
A2 dt 

S K x -  

Assuming the static-tube law (figure 3) to be valid in the dynamic case, A is known 
to be almost linearly proportional to the transmural pressure P -  Pe for the fully 
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FIGURE 11. Movement of tube-wall top and sound due t o  transmission wave at 5 ern distal to  the 
pressure box; L, = 9 em, Po = 40 cmH,O, S = 14 cm: -, pressure; ---, sound; -, wall 
movement. (a)  Peb = 0, ( b )  Peb = 42, (c) Peb = 45 cmH,O. 

inflated tube. Since outside the box P, is constant 

Introducing (3) into (2), 

- = K = const. 
dA 
dP 

K dP 
A2 dt 

SCCT-. 

Assuming that the change in A due to the pressure wave ie small, 

(3) 

(4) 

where A ,  is the value a t  P = Po. Equation (5) indicates that  the amplitude of the sound 
is in proportion to time derivative of the pressure. Therefore if a pressure wave 
consists of a steep ascending limb and smooth remaining part a strong sound is 
generated only a t  the steep ascending limb. 
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FIGURE 12. Relation between H and P on the ascending limb of the upper two figures in 
figure 11: 0, Peb = 0; 0 ,  Peb = 42 cmH,O. 
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FIGURE 13. Comparison of pressure wave and sound measured simultaneously a t  the exit of the 
pressure box; P, = 40 cmH,O, (a) L, = 9 cm, S = 14 cm: -, Peb (cmH,O) = 0;  ---, 41.4; -.-, 
42.0; . . . . ,43.0. (6) L, = 19 em, S = 20.5 cm: -, Peb (cmH,O) = 0; ---, 39.5; -.-, 41.2; . ' ' ., 
415.  

In  order to check the reliability of this analysis, displacement of the tube upper 
wall due to a propagating pressure wave was measured. Some examples of transmission 
pressure wave P and the tube top-wall displacement H ,  simultaneously measured a t  
5 cm distal to the 9 cm long pressure box, are shown in figure 11. I n  the figure 
monitored sound waves are also shown by broken lines for reference. Since the tube 
is set on a solid horizontal surface, the displacement of the tube top wall H is equal 
to the tube-diameter variation. The maximum value of H is less than 0.25 mm, being 
very small compared with the initial tube diameter of 9 mm ; therefore the assumption 
of small cross-sectional-area change is valid. The relation between H and P over the 
upstroke of the upper two figures is shown in figure 12. From the linear relation 
between H and P, (3) has been shown to be valid. 

Some examples of simultaneously measured pressure and sound waves are shown 
in figure 13. The figure clearly shows that,  as the steep ascending limb develops, the 
single positive sound becomes strong and sharp in its shape. When the collapsed tube 
segment is long, the high-frequency small pressure waves produce multipeaked sound. 
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Since the monitored sound waveform varied depending on the plastic-sleeve length 
attached to the microphone, the validity of ( 5 )  cannot be proved exactly by 
comparing the pressure and sound waves, but it is easily seen to  be satisfied fairly 
well. 

From these results, i t  has been shown that the clear thud Korotkoff sound a t  
diastole is generated by sudden expansion of a blood vessel due to the steep ascending 
limb of the transmission pressure wave which is developed in the partially collapsed 
vessel segment under the cuff. 

4. Calculation 
In  thiisection the mechanism by which the steep ascending limb of the transmission 

wave is produced will be shown by a one-dimensional numerical analysis simulating 
the experiment. 

I n  order to simplify the problem, the following assumptions are made: 
(i) the pressure-wave propagation phenomenon is one-dimensional ; 
(ii) the fluid filling the rubber tube is incompressible and inviscid; 
(iii) the tube law obtained in static condition is valid even in a dynamic 

phenomenon. 
The method of characteristics is a convenient measure to treat this kind of 

one-dimensional pressure-wave propagation problem (Kamm & Shapiro 1979) and 
the result greatly helps us to  understand the behaviour of every part of the pressure 
wave. However, if pressure wave overtaking occurs as expected in the condition 
treated here and a discontinuous wavefront such as a shock appears, an unique 
solution cannot be determined any longer by the method, and it becomes necessary 
to adopt an appropriate condition in order to  get the unique solution. So far, what 
fluid-dynamical phenomenon occurs a t  the shock developed in a collapsible tube by 
pressure-wave overtaking has not been understood well, and hence i t  cannot be 
determined what condition is most suitable. Some researchers (Beam 1968; Oates 
1975) who treated shock formation by wave overtaking or a hydraulic jump in steady 
flow showed that there must be some energy loss a t  the shock. Their analysis, 
however, is developed on the assumption that the tube law, which is considered to 
be valid for pressure waves not so steep as shock (usually the statically obtained one 
as shown in figure 3), is also valid in the shock-wave region. As shown in the appendix, 
the amount of energy loss depends on the tube law for the shock (TLS); therefore, 
if the energy loss is taken into consideration, the selection of TLS is crucial. The TLS 
selected by the abovementioned researchers has been shown not to represent the real 
situation, as shown in the appendix. Since little is known about the fluid-dynamical 
phenomenon a t  the shock, what other TLS should be selected has not been 
determined, and furthermore it is not even known whether or not there is energy loss 
a t  the shock. However, judging from the experimental results conducted by 
Kececioglu et al. (1981), in which they measured pressure recovery across the 
stationary shock that is established in the collapsible tube when water flow jumps 
from a supercritical to  subcritical condition, the energy loss a t  the shock formed by 
the wave overtaking is estimated to  be very small. Therefore in our calculation the 
following assumptions are made: there is no energy loss a t  the shock wave and the 
shock propagates without changing its shape. The details of the shock treatment will 
be discussed in the appendix. 

The assumptions adopted in the calculation, however, seem to become inadequate 
for the shocks with large tube cross-sectional-area change. As seen in the experimental 
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FIGURE 14. Schematic diagram explaining,various occasions of step pressure wave propagation : 
(a )  simple propagation; ( b )  before overtaking or meeting; ( c )  after overtaking or meeting; ( d )  a t  
the Pe discontinuity location. 

results, the shocks with large area change are accompanied by the high-frequency 
pressure waves, which are considered to be caused by axial tension and bending 
stiffness of the tube wall (McClurken et al. 1981) and seem to change the shape in 
the course of propagation. Therefore, in order to treat the shocks more realistically, 
more exact treatment including a realistic equation of motion of the tube wall may 
have to be introduced. 

The equations determining the variables a t  the shock obtained from the above- 
mentioned assumptions, shown below as (8) and (lo), become identical with the 
equations of the characteristics for a small-amplitude pressure wave. Therefore all 
the pressure waves, from small-amplitude wave to shock, can be treated by them 
without using the equations of characteristics, and hence the calculation is very 
simple and time saving. 

The equations used in the calculation are reduced as follows. Let us consider, 
first, a step pressure wave propagating rightwards a t  velocity W through a uniform 
collapsible tube with constant uniform external pressure Pe, as shown in figure 14 (a ) .  
Wave propagation velocity W and particle velocity KJ are defined to  be positive 
towards the right. The variables in front of and behind the step are indicated by 
subscripts 1 and 2 respectively. The mass-conservation law and the integrated 
equation of motion are 

~ & ( l 7 ~ - -  W )  = pAl([fl- W ) ,  (6) 

;p(u2-w)2+P2 =&l(u1-W)2+e, (7 )  

where p is the density of the fluid in the tube. Eliminating W from (6) and (7),  

where the + sign corresponds to a right-travelling wave and - to a left-travelling 
wave. Since the locations 1 and 2 belong to the non-shock region, the relation between 
A and P at those places should satisfy the statically obtained tube law 

A = F(P-Pe). (9) 

From (8) and (9), if all the variables in front of the step and any one of them behind 
it are known, the state behind the step is known. Once those variables are known, 
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the wave-propagation velocity W is determined by (6) ,  which is rewritten as 
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Applying (8)-( lo),  overtaking and interaction ofwaves are treated as follows. When 
one wave overtakes or meets another one as shown in figure 14 ( b ) ,  a pair of step waves 
propagating rightwards a t  velocity Wa and leftwards a t  Wb are produced, as shown 
in figure 14 ( c ) .  Expressing variables corresponding to each region by the subscripts 
shown in the figure and applying (8) to both waves, 

Since the variables with subscripts 1 and 3 are all known, P,, U4 and A,  are determined 
from ( 1 1 )  and (9) and Wa from (10). 

Lastly, a step pressure wave passing through the tube, in which the external 
pressure changes discontinuously from Pea to Peb a t  Sb as shown in figure 14(d), is 
considered. When a right-travelling step pressure wave 1 reaches the Pe discontinuous 
plane S b ,  a reflection wave 3 and a transmission wave 2, which propagate leftwards 
and rightwards a t  velocity W, and W, respectively, arc produced. At Lyb, the flow 
is steady until the other wave reaches there ; therefore steady mass-conservation law 
and Bernoulli’s equation must be satisfied. The mass flow rates of waves 3 and 2 are 
determined by applying (8) multiplied by A, or A,. Equating them 

From Bernoulli’s equation 

[ I$}’. (13) 
p ( A 3 2 1 ; 2  Pl ) 

As the variables with subscripts 1 and 0 are all known, &, A, and P,, A, are 
determined by solving (12)-(15) simultaneously. U,, U,  and W,, W ,  are also 
determined from (8) and (10) respectively. 

Using these equations, propagation of a finite-amplitude pressure wave through 
an uniform tube, of which a portion is partially collapsed, was calculated by a 
computer and compared with the experimental results. In  the following calculation 
the experimentally determined tube law (figure 3),  approximated by many short 
straight-line segments, is used and the tube is assumed to be infinitely long. The initial 
condition, the pressure distribution along 3 a t  t = 0, is calculated from the 
experimentally obtained pressure wave a t  S = - 1.5 ern in a fully inflated tube case, 
which is approximated by 24 steps as shown in figure 15. The wall thickness of the 
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.RE 15. Approximation of incident pressure wave by 24 steps. . . . . , measured 
wave a t  X = - 1.5 cm, Po = 40, Peb = 0. 
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FIGURE 16. Comparison between calculated and measured pressure waves in and around the 
partially collapsed tube segment ; L, = 19 cm, P, = 40, Peb = 40.8, P, - Peb = - 0.8 cmH,O : . . . . , 
measured pressure; -, calculated pressure, assuming L, = 19; -.-, calculated pressure, 
assuming L, = 18. 

pressure box is neglected and the tube segment in the box is assumed to be collapsed 
uniformly. In  some cases, however, in order to take the end effect of the collapsed 
tube segment into consideration, the effectively collapsed segment length is assumed 
shorter by 1 cm than the box length. Pressure waves smaller than 0.01 cmH,O, 
produced by wave interaction or a t  P, discontinuities, are neglected. 

Calculated pressure waves a t  various locations within and outside the 19 cm long 
pressure box is shown in figure 16. In the figure, experimentally obtained pressure 
waves are also shown by dotted lines for comparison. The conditions of calculation 
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FIGURE 17. ( X ,  t)-plane diagram showing propagation behaviour of each step pressure; 
L, = 19 em, Po = 40, Peb = 408, Po-Pe, = -08 cmH,O. 

and experiment are the same as those in figure 7. Close similarity between the 
measured and the calculated pressure waves should be noted. The similarity is 
improved as shown by broken lines, if the effective collapsed tube segment length 
is assumed to be shorter by 1 em than the pressure-box length. Deformation of the 
pressure wave in the collapsed tube segment is complicated. Let us see the behaviour 
of each step pressure wave indicated on a physical (X, t)-plane shown in figure 17. 
The numbers in the figure indicate the amplitude of pressure wave P- P,. As the first 
incident step pressure wave reaches to the proximal end of the collapsed tube segment 
( X  = 0), a strong negative reflection wave and a positive transmission wave are 
produced because of sudden change of the tube compliance. The pressure amplitude 
of the transmission wave is only 0.9 cmH,O, but its cross-sectional-area change is 
relatively large, more than 13 % , and hence the step is called a shock wave. The second 
incident step pressure wave also produces a t  X = 0 a negative reflection and a positive 
transmission wave. This second transmission wave propagates faster (at  2-1 m/s) than 
the first one (0.9 m/s) because of the strong nonlinear characteristics of the tube law 
around zero transmural pressure, and soon overtakes the first one to make a stronger 
wave-front shock and, at the same time, a negative reflection wave. Each following 
step pressure wave repeats the same phenomenon. As seen in the figure, however, 
with increase of the incident pressure-wave amplitude, the amplitude of the trans- 
mission wave into the tube segment in the box increases and exceeds Peb, and hence 
the initially collapsed tube segment becomes fully inflated. This reduces greatly the 
tube-complicance discontinuity at X = 0 despite the P, difference, because the tube 
compliance is almost constant when P-P& is greater than 5 cmH,O (see figure 3). 
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This means that the reflection wave produced at X = 0 becomes very weak and the 
incident pressure wave propagates into the initially partially collapsed tube segment, 
without significant deformation, a t  the propagation velocity of the fully inflated tube. 
The propagation velocity of the wave-front shock increases with its growth, but it 
is still very low. Therefore i t  is continuously overtaken by the succeeding steps. 

When the wave-front shock reaches the distal end of the collapsed tube segment 
a reflection and a transmission shock wave are produced. The former corresponds to 
the second hump of each pressure wave in figure 16 and the latter to  the steep 
ascending limb of the transmission wave to  the fully inflated distal tube. Thus it has 
been shown that the steep ascending limb which produces the thud Korotkoff sound 
is a shock wave built up within the partially collapsed tube segment. 

As mentioned above, the high-amplitude portion of the incident wave propagates 
through the tube segment in the box without any deformation or delay; therefore 
the transmission wave recorded at the distal side of the pressure box has a shape 
consisting of the steep ascending limb (shock wave) and the intact incident wave 
portion following it. 

As seen in figure 16, in the real situation the small high-frequency pressure waves 
appear in the course of the wave-front shock development, but not in the calculation. 
The difference is caused by the assumptions set for the calculation. 

The effect of the collapsed tube segment length Lb is easily seen from figure 17; 
that is, if Lb is shorter than some critical value Lb, at which transmission wave 
corresponding to P,,, overtakes the wave-front shock, the longer is Lb, then the 
greater is the amplitude of the wave-front shock, but, for Lb longer than Lb,, the 
wave-front shock amplitude decreases with increasing Lb, because of the expansion 
wave overtaking the wave-front shock. 

In order to check the effect of the external pressure Peb, a calculation has been done 
for various Peb. When Po-Peb is greater than 4.0 cmH,O, the compression-wave 
propagation velocity does not depend so strongly on P- Peb that  overtaking occurs 
in the segment, therefore no significant wave deformation is observed. Below this 
&- Peb value, however, the propagation velocity depends strongly on P- Peb, and 
hence the wave-front shock formation occurs even in the short collapsed tube 
segment. Some examples of the calculated pressure wave with wave-front shock at 
the exit of the 19 cm pressure box are shown in figure 18. I n  the figure experimental 
results are also shown by dotted lines. The close resemblance between the two results 
should be noted. I n  the range of Po- Peb shown in the figure, the propagation velocity 
at the wave front decreases rapidly with decreasing Po-Peb, therefore the amount 
of the successive pressure wave overtaking the wave-front shock increases with 
decreasing P, -Peb, and, corresponding to this phenomenon, the shock strength a t  
first increases and then decreases. 

It is interesting that the one-dimensional calculation is valid even when 
P, - Peb = - 2.0 cmH,O, where the initial cross-sectional area of the collapsed segment 
is below one-half of that  of the fully inflated segment, and hence the cross- 
sectional-area ratio a t  the wave-front shock becomes as large as 2.0. The (X, t)-plane 
diagram a t  Po - Peb = - 2.0 is shown in figure 19. The wave-front shock propagation 
is very slow compared with that in figure 17, and the expanding pressure-wave 
portion of the incident wave overtakes the wave-front shock over the distal half of 
the collapsed segment. I n  the case of the expansion wave overtaking, the wave-front 
shock weakens and, a t  the same time, positive reflection waves are produced and the 
shock-propagation velocity slows down. Even in this case, the highest-amplitude 
portion of the incident wave propagates a t  about the same velocity as in the fully 
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FIGURE 18. Comparison between calculated and measured pressure waves at the exit of the 19 cm 
pressure box; P, = 40 cmH,O, X = 20-5 cm: (a) Peb = 39.5; (b )  405; (c) 41.2; (d) 42.0 cmH,O. 

inflated tube, but its hind low-amplitude portion propagates more slowly because the 
tube segment again collapses partially, corresponding to  the low-amplitude portion. 
This slow propagation causes the abovementioned delay of the transmission wave. 
As seen in the figure, the propagation velocity recovers after interaction with the 
reflected shock, therefore if the tube length is short (say 9 cm) and the shock reflection 
occurs early, no delay of the transmission wave is caused even in this P,-P,, 
condition, as seen in figure 10. 

5. Conclusion 
The following facts are evident from the abovementioned experimental and 

calculation results. 
(i) The thud Korotkoff sound a t  diastole is generated by sudden expansion of the 

tube, corresponding to  the very steep ascending limb of the transmission wave. 
(ii) The steep ascending limb is a wave-front shock which is built up very rapidly 

in the partially collapsed tube segment under the compression cuff by the active 
overtaking phenomenon due to the strong nonlinear tube-law characteristics around 
zero transmural pressure. 

(iii) Because of the nonlinear tube law, the incident wave behind the wave-front 
shock propagates through the initially collapsed tube segment without significant 
deformation: therefore the transmission waves to  the distal inflated tube have a shape 
consisting of the shock and the intact incident wave portion following the shock. 
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X (cm) 

FIGURE 19. (X,t)-plane diagram for high collapse grade: L, = 19 cm, 
& = 40, Peb = 42.0, Po-Peb = -2.0 cmH,O. 

(iv) If the tube collapse grade is kept constant, the shock wave becomes stronger 
up to P,,, with increasing collapsed tube segment length and becomes weaker with 
further increase of the segment length. 

(v) The collapse grade shows a similar effect with the collapsed segment length, 
if the grade is below some limit. 

We would like to thank the referees for their useful comments and suggestions. 

Appendix 
When the wavelength of the pressure wave is large enough compared to the tube 

diameter (non-shock wave) the flow'in the tube is fairly well expressed by the 
following constitutive equations (Kamm & Shapiro 1979) : 

A = F(P-  P,) or P = f ( A ) .  (A 3) 

Equation (A 3) is the tube law obtained in the static condition. 
A non-shock compression wave generally steepens in the course of propagation and 

finally becomes a shock wave. Let us assume that the waveform of the shock does 
not change any further (assumption (i)) .  The number of conditions then becomes four, 
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(A 1)-(A 3) and assumption (i), and is greater by one than the number of dependent 
variables, P, u and A. Therefore to solve the problem i t  is necessary to take away 
one of the three equations (A 1)-(A 3) or to introduce one more dependent variable. 
Let us try to introduce the pressure loss AP as the new dependent variable. In the 
shock-wave region, the tube wall is greatly deformed in a short axial length ; therefore 
it is more reasonable to consider that the tube law for the shock region is not identical 
with that for the non-shock region. Hence the general constitutive equations for the - I 

aA a(Au) 
at ax 

shock region are as follows: 
-+- = 0, 

or 

au au l a p  AP 
at ax ax p , 
-+u 

tube law for shock region, (A 6) 

au au 
at ax _ -  - - w- 

aA --w--, aA _ -  
at ax 

where W is the shock propagation velocity. 
Introducing (A 7 a ,  b )  into (A 4) and (A 5 )  respectively, 

aA aAu 
- w-+- = 0, 

-w-+u ~ 

ax  ax 
au au l a p  AP 
ax ax p a x  p . 

Integrating (A 8) and (A 9) from plane 3 to plane 1 in figure 20(a),  

A,(ul- W)-A,(u,- W )  = 0, (A 10) 

r APdx = (P,--P,)+~p{(u2- W),-(u,- W)2} .  
J 2  

If the energy loss is zero, these equations become the same as (6) and (7).  The 
equations (A 10) and (A 11) are also the mass- and momentum-conservation equations 
for the stationary shock as shown in figure 2 0 ( b ) .  Let us try to relate the energy loss 
over the shock region, the left-hand term of (A l l ) ,  to the integrated pressure over 
the shock .region. The integrated form of the momentum equation for the stationary 
shock is 

A,{P,+p(u,- W)'} = Al{Pl+p(ul- W)'}+ (A 12) 

Putting u,- w = u,, u1- w = u,, 
(A 10) and (A 12) become A, U,  = A, U,  = Q ,  

A2 

A,(P,+pU;) = Al(Pl+pU3+JAl PdA, (A 14) 

where Q is the volume flow rate. As a t  planes 1 and 3 the tube law for the non-shock 
region should be satisfied 

pz = f(A2); 
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from this equation and (A 13) and (A 14) 

Therefore if the tube law in the shock region (TLS) is given then A ,  is determined 
from (A 15). 

Now, using the abovementioned notation, the energy loss a t  the shock derived from 
(A 11)  is 

-AE APdx = ( P , - < ) + $ ( Q -  U:). (A 16) s: 
Introducing (A 13) and (A 14) into (A 16), 

Equation (A 17) tells us that the amount of energy loss a t  the shock AE depends on 
the tube law in the shock region (TLS). The only experimental study that can be 
used to discuss the suitable TLS is that  of Kececioglu et al. (1981). So let us consult 
the experimental results. To do so, some preparation is necessary. 

From (A 17) ,  the energy lossat the shock wave, across which the tube cross-sectional 
area changes from A ,  to A, ,  depends on the second term on the right-hand side, named 
REC. When the tube law is expressed as shown in figure 21, the term REC is the 
area surrounded by the TLS, the horizontal P = Pl line and the vertical A = A ,  line. 
Though the process is not shown here, the TLS for the loss-free condition (AE = 0) 
is determined from (A 13), (A 14) and (A 16), or P'(A)+gAP"(A) = 0 (Kamm & 

and shown in figure 21 by a broken line. I n  this case REC is largest. When the 
Borda-Carnot condition (that is P = over the shock region) is selected as TLS, the 
term REC becomes zero, and hence AE is maximum. When the statically obtained 
tube law is selected as TLS, as done by Oates (1975), the amount of REC is the 
hatched area in figure 21 and the energy loss is relatively large. Now, let us relate 
the REC term and the experimental results of Kececioglu et al. (figure 16 in their 
paper). The term C, used by them is 
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FIQURE 21. Tube laws in the shock region representing various hypotheses. (a) statically obtained 
tube law; (b) Borda-Carnot condition; (c) tube law for loss-free shock: (d) tube law for steady-flow 
hydraulic jump. 

Introducing (A 16) and (A 13) into (A 19), 

AE c! =- 

and introducing (A 17) into (A 20) 

When the Borda-Carnot condition is selected as TLS, C ,  is equal to the first term 
on the right-hand side of (A 21), and expressed by C,,-, in their figure. When the 
statically obtained tube law is selected as TLS (Oates’ case) there is some pressure 
recovery, and C,, expressed by C,, in their figure, is a little bit larger than PPB-,. 
But, according to the figure, almost all the experimental results, except the long-type 
shock, are greater than Cpo.  Therefore the amount of REC is much greater than 
that in Oates’ case. This means that the TLS that suits the experimental condition 
of Kececioglu et al. is between those for the loss-free case and for Oates’ case, 
something like the one shown by a chain line in figure 21. Since Kececioglu et al. 
measured pressure recovery across the stationary shock that is established in the 
collapsible tube when the water flow jumps from a supercritical to a subcritical 
condition, there must be some flow separation at the stationary shock, which causes 
great energy loss. I n  the case of a moving shock, treated in this report, the flow 
observed from the coordinate system fixed to the shock becomes similar to that of 
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Kececioglu et al. In  the moving-shock case, however, the real flow direction is opposite 
to the stationary-shock case, and hence the velocity profiles in their boundary layers 
are quite different. That is, in the moving-shock case, the maximum velocity appears 
at the tube wall, which moves at the propagation velocity of the shock. In the flow 
of this kind, no flow separation at the shock is expected. Therefore the energy loss 
is considered to be smaller in the moving-shock case than in the stationary case. This 
means that TLS suitable for the moving shock may approach closer to the one for 
a loss-free condition in figure 21. Based on these considerations, the loss-free 
assumption for the shock wave is considered to be a good approximation. 
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